Skip to main content

P-Block Element

P BLOCK ELEMENTS

name of the chapter: P block element 

Content Provider: FIITJEE

Lecturer from FIITJEE


Introduction based on NCERT :

In p-block elements, the last electron enters the outermost p orbital. As we know that the number of p orbitals is three and, therefore, the maximum number of electrons that can be accommodated in a set of p orbitals is six. Consequently, there are six groups of p–block elements in the periodic table numbering from 13 to 18. Boron, carbon, nitrogen, oxygen, fluorine, and helium head the groups. Their valence shell electronic configuration is ns2 np1-6(except for He). The inner core of the electronic configuration may, however, differ. The difference in the inner core of elements greatly influences their physical properties (such as atomic and ionic radii, ionization enthalpy, etc.) as well as chemical properties. Consequently, a lot of variation in the properties of elements in a group of p-block is observed. The maximum oxidation state shown by a p-block element is equal to the total number of valence electrons (i.e., the sum of the sand p-electrons). Clearly, the number of possible oxidation states increases towards the right of the periodic table. In addition to this so-called group oxidation state, p-block elements may show other oxidation states which normally, but not necessarily, differ from the total number of valence electrons by a unit of two. The important oxidation states exhibited by p-block elements are shown in Table 11.1. In boron, carbon, and nitrogen families the group oxidation state is the most stable state for the lighter elements in the group. However, the oxidation state two-unit less than the group oxidation state becomes progressively more stable for the heavier elements in each group. The occurrence of oxidation states two-unit less than the group oxidation states is sometimes attributed to the ‘inert pair effect’.

EMBEDDED PDF:




Comments

Popular posts from this blog

Chemical Kinetics class 12

Chemical Kinetics  name of the chapter: Chemical Kinetics Content Provider: FIITJEE Lecturer from FIITJEE Introduction based on NCERT: Chemistry, by its very nature, is concerned with change. Substances with well-defined properties are converted by chemical reactions into other substances with different properties. For any chemical reaction, chemists try to find out (a) the feasibility of a chemical reaction which can be predicted by thermodynamics ( as you know that a reaction with ΔG < 0, at constant temperature and pressure is feasible); (b) the extent to which a reaction will proceed can be determined from chemical equilibrium; (c) speed of a reaction i.e. time taken by a reaction to reach equilibrium. Along with feasibility and extent, it is equally important to know the rate and the factors controlling the rate of a chemical reaction for its complete understanding. For example, which parameters determine how rapidly food gets spoiled? How to design a rapid...

Periodic Table Shortcut

 Periodic table shortcut  Name of the page:   shortcut for periodic table  Done by:                       FIITJEE Student Applicable for all the classes  What is a Periodic Table? a table of the chemical elements arranged in order of atomic number, usually in rows, so that elements with similar atomic structure (and hence similar chemical properties) appear in vertical columns. The periodic table, also known as the periodic table of elements, is a tabular display of the chemical elements, which are arranged by atomic number, electron configuration, and recurring chemical properties. The structure of the table shows periodic trends. who invented the periodic table? many collections of scientists invented it. Embedded PDF:

Solid state class 12 Physical

 Solid states  name of the chapter:  Solid State Content Provider: FIITJEE Lecturer from FIITJEE Introduction given by NcertText book:  We are mostly surrounded by solids and we use them more often than liquids and gases. For different applications, we need solids with widely different properties. These properties depend upon the nature of constituent particles and the binding forces operating between them. Therefore, the study of the structure of solids is important. The correlation between structure and properties helps in discovering new solid materials with desired properties like high-temperature superconductors, magnetic materials, biodegradable polymers for packaging, biocompliant solids for surgical implants, etc. From our earlier studies, we know that liquids and gases are called fluids because of their ability to flow. The fluidity in both of these states is due to the fact that the molecules are free to move about. On the contrary, the constitu...